(本小题满分12分)(解答过程写在试卷上无效)
已知数列的首项
,
,前
项和为
,且
,设
,
(1)设,记
,试比较
与
的大小,并说明理由;
(2)若数列满足
,在每两个
与
之间都插入
个
,使得数列
变成了一个新的数列
,试问:是否存在正整数
,使得数列
的前
项的和
?如果存在,求出
的值;如果不存在,说明理由.
已知不等式的解集为
.
(Ⅰ )求的值;
(Ⅱ )若,求
的取值范围.
在极坐标系中,圆的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)若圆上的动点
的直角坐标为
,求
的最大值,并写出
取得最大值时点P的直角坐标.
已知线性变换:
对应的矩阵为
,向量β
.
(Ⅰ)求矩阵的逆矩阵
;
(Ⅱ)若向量α在作用下变为向量β,求向量α.
已知函数.
(Ⅰ)当时,求曲线
在原点处的切线方程;
(Ⅱ)当时,讨论函数
在区间
上的单调性;
(Ⅲ)证明不等式对任意
成立.
已知,曲线
上任意一点
分别与点
、
连线的斜率的乘积为
.
(Ⅰ)求曲线的方程;
(Ⅱ)设直线与
轴、
轴分别交于
、
两点,若曲线
与直线
没有公共点,求证:
.