(本小题满分12分)在平面直角坐标系中,点
,直线
,设圆
的半径为1,圆心在
上.
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
已知向量,
.
(I)若,求
值;
(II)在中,角
的对边分别是
,且满足
,
求函数的取值范围.
(本小题满分12分)
过曲线上的一点
作曲线的切线,交x轴于点P1,过P1作垂
直于x轴的直线交曲线于Q1,过Q1作曲线的切线,交x轴于点P2;过P2作垂直于x轴的直线交曲线于Q2,过Q2作曲线的
切线,交x轴于点P3;……如此继续下去得到点列:
设
的横坐标为
(I)试用n表示;
(II)证明:
(III)证明:
(本题满分12分)
已知椭圆的左、右焦点为
,过点
斜率为正数的直线交
两点,且
成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)若直线y=kx(k<0)与交于C、D两点,求使四边形ABCD面积S最大时k的值。
(本小题满分12分)
已知函数
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围。
(本题满分12分)
已知椭圆的左、右焦点为
,过点
斜率为正数的直线交
两点,且
成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)若直线y=kx(k<0)与
交于C、D两点,求使四边形ABCD面积S最大时k的值。