(本小题满分12分)
一个多面体的直观图和三视图如图所示:
(I)求证:PA⊥BD;
(II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30o?若存在,求的值;若不存在,说明理由.
(本小题满分12分)
已知函数的图象的一部分如下图所示.
(I)求函数的解析式;
(II)求函数的最大值与最小值.
已知函数
(1)若x=2为的极值点,求实数a的值;
(2)若在
上为增函数,求实数a的取值范围;
(3)当时,方程
有实根,求实数b的最大值。
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点P(4,0)且不垂直于x轴直线
与椭圆C相交于A、B两点。
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。
如图,在四棱锥P—ABCD中,底面ABCD是菱形,平面ABCD,E是PC的中点,F是AB的中点。
(1)求证:BE//平面PDF;
(2)求证:平面平面PAB;
(3)求平面PAB与平面PCD所成的锐二面角的大小。