(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数和在点P处相切,称点P为这两个函数的切点.设函数,.(Ⅰ)当,时,判断函数和是否相切?并说明理由;(Ⅱ)已知,,且函数和相切,求切点P的坐标; (Ⅲ)设,点P的坐标为,问是否存在符合条件的函数和,使得它们在点P处相切?若点P的坐标为呢?(结论不要求证明)
如图,在三棱锥中,底面,,,,点,分别在棱上,且 (Ⅰ)求证:平面; (Ⅱ)当为的中点时,求与平面所成的角的大小; (Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.(1)证明:点在平面上的射影为的中点;(2)求二面角的大小; (3)求点到平面的距离.
如图,矩形ABCD所在的平面,M,N分别为AB,PC的中点。求证:平面
在正方体中,M、N、P分别是的中点,求证:平面MNP//平面
如图在三棱锥S中,,,,. (1)证明。 (2)求侧面与底面所成二面角的大小。 (3)求异面直线SC与AB所成角的大小
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号