(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数
和
在点P处相切,称点P为这两个函数的切点.设函数
,
.
(Ⅰ)当,
时,判断函数
和
是否相切?并说明理由;
(Ⅱ)已知,
,且函数
和
相切,求切点P的坐标;
(Ⅲ)设,点P的坐标为
,问是否存在符合条件的函数
和
,使得它们在点P处相切?若点P的坐标为
呢?(结论不要求证明)
(文科)(本小题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第一组 |
[230,235) |
8 |
0.16 |
第二组 |
[235,240) |
① |
0.24 |
第三组 |
[240,245) |
15 |
② |
第四组 |
[245,250) |
10 |
0.20 |
第五组 |
[250,255] |
5 |
0.10 |
合计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值 (微克/立方米) |
[25,35] |
(35,45] |
(45,55] |
(55,65] |
(65,75] |
(75,85] |
频数 |
3 |
1 |
1 |
1 |
1 |
3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),满足
=
(Ⅰ)求角B的大小;(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
在棱长为2的正方体中,设
是棱
的中点.
⑴ 求证:;
⑵ 求证:平面
;
⑶ 求三棱锥的体积.
在中,
边上的高所在的直线的方程为
,
的平分线所在直线的方程为
,若点
的坐标为
。
(1)求点的坐标;
(2)求直线BC的方程;
(3)求点C的坐标。