(本小题满分12分)已知数列{}的前n项和为,且满足.(Ⅰ)证明:数列为等比数列,并求数列{}的通项公式;(Ⅱ)数列{}满足,其前n项和为,试求满足的最小正整数n.
设函数. (1)求函数的单调区间; (2)若对恒成立,求实数的取值范围.
设函数,其中向量, 向量. (1)求的最小正周期; (2)在中,分别是角的对边,, 求的长.
已知:对任意,不等式恒成立;:存在,使不等式成立,若“或”为真,“且”为假,求实数的取值范围.
在平面直角坐标系中,. (1)求以线段为邻边的平行四边形的两条对角线的长; (2)设实数满足,求的值.
(本小题满分14分) 已知数列,, (Ⅰ)求数列的通项公式; (Ⅱ)当时,求证: (Ⅲ)若函数满足: 求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号