(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
分组 |
频数 |
[0,0.5) |
4 |
[0.5,1) |
8 |
[1,1.5) |
15 |
[1.5,2) |
22 |
[2,2.5) |
25 |
[2.5,3) |
14 |
[3,3.5) |
6 |
[3.5,4) |
4 |
[4,4.5] |
2 |
合计 |
100 |
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?
(本题12分) 已知函数在
上为增函数,在[
0,2]上为减函数,
。
(1)求的值;
(2)求证:。
(本题12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量
的分布列和数学期望.
(本题12分)已知二项式
的展开式中前三项的系数成等差数列.
(1)求的值;
(2)设.
①求的值;②求
的值;
③求的最大值.
(本题12分)某班从4名男同学和2名女同学中任选3人参加全校举行的“八荣八耻”教育演讲赛。如果设随机变量表示所选3人中女同学的人数.
(1)若,求共有不同选法的种数;
(2)求的分布列和数学期望;
(3)求“”的概率。
设函数,
.
(1)当时,求与函数
图象相切且与直线
平行的直线方程
(2)求函数的单调区间
(3)是否存在正实数,使
对一切正实数
都成立?若存在,求出
的取值范围;若不存在,请说明理由.