(.安徽省,第20题,10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
在平面直角坐标系中,抛物线与
轴交于点
,
,与
轴交于点
,直线
经过
,
两点.
(1)求抛物线的解析式;
(2)在上方的抛物线上有一动点
.
①如图1,当点运动到某位置时,以
为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点
的坐标;21·cn·jy·com
②如图2,过点,
的直线
交
于点
,若
,求
的值.
如图,为⊙O的直径,
是
延长线上一点,
切⊙O于点
,
是⊙O的弦,
,垂足为
.
(1)求证:;
(2)过点作
交⊙O于点
,交
于点
,连接
.若
,
,求
的长.
已知关于x的一元二次方程:
(1)试判断原方程根的情况;
(2)若抛物线与
轴交于
两点,则
,
两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:
)
某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件型服装计酬16元,加工1件
型服装计酬12元.在工作中发现一名熟练工加工1件
型服装和2件
型服装需4小时,加工3件
型服装和1件
型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件型服装和1件
型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工,
两种型号的服装,且加工
型服装数量不少于
型服装的一半”.设一名熟练工人每月加工
型服装
件,工资总额为
元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
如图,一条公路的转弯处是一段圆弧().
(1)用直尺和圆规作出所在圆的圆心
;(要求保留作图痕迹,不写作法)
(2)若的中点
到弦
的距离为
m,
m,求
所在圆的半径.