(满分13分)设函数,曲线
在点
处的切线方程是
(Ⅰ)求的解析式;
(Ⅱ)证明:函数的图象是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线上任意一点的切线与直线
和直线
所围成的三角形的面积是定值,并求出这个定值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2
=
b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.
已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2+
.
(1)当∈时,求函数f(x)的值域;
(2)当x∈时,若f(x)=8,求函数f
的值;
(3)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y=g(x)的图象,求函数g(x)的表达式并判断奇偶性.
已知函数f(x)=4cos x·sin+a的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.
函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)设α∈,f
=2,求α的值.
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.