(本小题满分10分)选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x方程x2-14x+mn=0的两个根.
(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
(本小题满分14分)已知,
,记函数
.
(1)求函数取最大值时
的取值集合;
(2)设的角
所对的边分别为
,若
,
,求
面积的最大值.
(本小题满分14分)已知函数,其中
为实数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ) 当时,若函数
对定义域内的任意
恒成立,求实数
的取值范围.
(Ⅲ)证明,对于任意的正整数,不等式
恒成立.
(本小题满分12分)如图,在平面直角坐标系中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点.若直线
斜率为
时,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)试问以为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
(本小题满分12分)如图,在四棱锥中,
,
平面
,
平面
,
,
,
.
(Ⅰ)求棱锥的体积;
(Ⅱ)求证:平面平面
;
(Ⅲ)在线段上是否存在一点
,使
平面
?若存在,求出
的值;若不存在,说明理由.
(本小题满分12分)在中,内角
的对边分别为
,
.
(Ⅰ)若,
,求
和
;
(Ⅱ) 若,且
的面积为2
,求
的大小.