(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为
、
、
,乙袋中红色、黑色、白色小球的个数均为
,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求
的分布列和数学期望.
(本小题满分14分)
甲乙二人用4张扑克牌(分别是红桃2, 红桃3, 红桃4, 方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设分别表示甲、乙抽到的牌的数字
,写出甲乙二人抽到的牌的所有情况.
(Ⅱ)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
(本小题满分14分)
如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F;
(I)证明 平面
;
(II)证明平面EFD;
(本小题满分12分)已知定义域为R,
(1)求的值域;
(2在区间上,
,求
)
已知.
(1)当时,求
上的值域;
(2) 求函数在
上的最小值;
(3) 证明: 对一切,都有
成立
已知函数
(1)求的值;
(2)已知数列,求证数列
是等差数列;
(3)已知,求数列
的前n项和
.