(本题9分)如图,点
在
轴的正半轴上,
,
,
.点
从点
出发,沿
轴向左以每秒1个单位长的速度运动,运动时间为
秒.
(1)点的坐标是 ;
(2)当时,求
的值;
(3)以点为圆心,
为半径的
随点
的运动而变化,当
与四边形
的边(或边所在的直线)相切时,求
的值.
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30º,CD=6cm.求∠BCD的度数
求⊙O的直径.
先化简,再求值:其中
计算:.
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,).
求抛物线的解析式及其顶点D的坐标;
设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在直线CD的上方,y轴及y轴的右侧的平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的点G的坐标;
如图,抛物线的对称轴与x轴的交点M,过点M作一条直线交∠ADB于T,N两点,①当∠DNT=90°时,直接写出
的值;
②当直线TN绕点M旋转时,
试说明: △DNT的面积S△DNT=;
并猜想 :的值是否是定值?说明理由.
某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.
若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数
月销量x(件) |
1500 |
2000 |
销售价格y(元/件) |
185 |
180 |
成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为(元)
(利润=销售额-成本-广告费).若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利
润为(元)(利润=销售额-成本-附加费).
当x=1000时,y= ▲元/件,w甲= ▲元
分别求出
,
与x间的函数关系式(不必写x的取值范围);
当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;
如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?