已知椭圆的两个焦点为
、
,离心率为
,直线
与椭圆相交于
、
两点,且满足
,
,
为坐标原点.
(1)求椭圆的方程;
(2)证明:的面积为定值.
已知是实数,函数
,
和
,分别是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致.
(Ⅰ)设,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(Ⅱ)设且
,若函数
和
在以
为端点的开区间上单调性一致,求
的最大值.
如图,已知椭圆的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,
(Ⅰ)设直线的斜率分别为
,求证:
为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以
为直径的圆是否经过某定点?请证明你的结论.
某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为
元,购买该商品得到的实际折扣率为
.
(Ⅰ)写出当时,
关于
的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于?
如图,在四棱锥中,侧棱
底面
,底面
为矩形,
为
上一点,
,
.
(I)若为
的中点,求证
平面
;
(II)求三棱锥的体积.
在中,角
所对的边分别为
,且
.
(Ⅰ)求函数的最大值;
(Ⅱ)若,
,
,求
的值.