(本小题14分)已知直线与椭圆
相交于A、B两点,
且线段AB的中点在直线上.
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线的对称点的在圆
上,求此椭圆的方程.
甲、乙两个箱子中装有大小相同的小球,甲箱中有2个红球和2个黑球,乙箱中装有2个黑球和3个红球,现从甲箱和乙箱中各取一个小球并且交换.
(Ⅰ)求交换后甲箱中刚好有两个黑球的概率;
(Ⅱ)设交换后甲箱中黑球的个数为,求
的分布列和数学期望.
过点作倾斜角为
的直线与曲线
交于点
,
求的最小值及相应的
值.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—5:不等式选讲
设函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若不等式的解集是非空的集合,求实数
的取值范围.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线
的参数方程是
(
为参数),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
,
两点,求M,N两点间的距离.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—1:几何证明选讲
如图,已知是
的直径,
,
是
上两点,
于
,
交
于
,交
于
,
.
(Ⅰ)求证:是
的中点;
(Ⅱ)求证:.