(本小题满分12分)某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为(单位:万元),其中
是产品售出的数量(单位:百件).
(Ⅰ)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量
的函数,求
;
(Ⅱ)当年产量是多少时,工厂所得利润最大?
(Ⅲ)当年产量是多少时, 工厂才不亏本?
如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.
某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.
(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
如图,在平面四边形中,
.
(1)求的值;
(2)若,
,求
的长.
设,且
.
(1);
(2)与
不可能同时成立.
已知直线(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点的直角坐标为
,直线
与曲线C 的交点为
,
,求
的值.