(本小题满分12分)某班同学利用国庆节进行社会实践,对 [25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求n、a、p的值;
(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X).
已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.
函数.
(1)若,求函数
的定义域
;
(2)设,当实数
,
时,求证:
.
在平面直角坐标系中,已知曲线
:
(
为参数),将
上的所有点的横坐标、纵坐标分别伸长为原来的
和
倍后得到曲线
.以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
:
.
(1)试写出曲线的极坐标方程与曲线
的参数方程;
(2)在曲线上求一点
,使点
到直线
的距离最小,并求此最小值.
已知为半圆
的直径,
,
为半圆上一点,过点
作半圆的切线
,过
点作
于
,交半圆于点
,
.
(1)求证:平分
;
(2)求的长.
已知函数.
(1)若在
处的切线与直线
垂直,求
的单调区间;
(2)求在区间
上的最大值.