圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P.(1)求点P坐标;(2)焦点在x轴上的椭圆过点P,且与直线交于A,B两点,若的面积为2,求椭圆的标准方程.
已知A(1,4),抛物线y2=16x的内接△ABC的重心恰好为抛物线的焦点,求直线BC的方程.
已知抛物线y2=-8mx(m>0),是否存在过抛物线的焦点F的弦PQ,使△POQ的面积最大或最小?若存在,求出PQ所在直线的倾斜角;若不存在,请说明理由.
若抛物线y2=2px(p>0)上一点M到准线及对称轴的距离分别为10和6,求M点的横坐标及抛物线方程.
已知顶点在原点,焦点在y轴上的抛物线C截直线y=2x-1所得的弦长为210.求抛物线C的方程.
抛物线y2=2px(p>0)上点M到定点A(3,2)和焦点F的距离之和的最小值为5,求此抛物线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号