问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
小刚去超市购买画笔,第一次花60元买了若干支 型画笔,第二次超市推荐了 型画笔,但 型画笔比 型画笔的单价贵2元,他又花100元买了相同支数的 型画笔.
(1)超市 型画笔单价多少元?
(2)小刚使用两种画笔后,决定以后使用 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的 型画笔 支,购买费用为 元,请写出 关于 的函数关系式.
(3)在(2)的优惠方案下,若小刚计划用270元购买 型画笔,则能购买多少支 型画笔?
如图,点 在以 为直径的 上,点 是半圆 的中点,连接 , , , .过点 作 交 的延长线于点 .
(1)求证:直线 是 的切线;
(2)若 , ,求 , 的长.
如图,无人机在离地面60米的 处,观测楼房顶部 的俯角为 ,观测楼房底部 的俯角为 ,求楼房的高度.
某校"校园主持人大赛"结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中" "这一范围的人数占总参赛人数的百分比为 ;
(2)补全图2频数直方图;
(3)赛前规定,成绩由高到低前 的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;
(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.