(本题6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)请说明:AB=CD.
某市体育中考现场考试内容有三项:50米跑为必测项目;另外在立定跳远和实心球中选一项,在坐位体前屈和1分钟跳绳中选一项.
(1)每位考生有__________种选择方案;
(2)若用……等字母分别表示上述各种方案,请用画树状图或列表的方法求小明与小刚选择同一种方案的概率.
(1)如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
(2)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=,求腰AB的长.
(1)化简:
(2)解方程组:
如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.
如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.
(2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____度时,图中阴影部分的面积和有最大值是________.