在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.
(1)通过计算说明:B地在A地的什么方向,与A地相距多远?
(2)救灾过程中,最远处离出发点A有多远?
(3)若冲锋舟每千米耗油0.5 L,油箱容量为29L,求途中还需补充多少升油.
某校为了解初中学生每天在校体育活动的时间(单位: ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为 ,图①中 的值为 ;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于 的学生人数.
解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为 .
在平面直角坐标系中,点 ,点 .已知抛物线 是常数),顶点为 .
(Ⅰ)当抛物线经过点 时,求顶点 的坐标;
(Ⅱ)若点 在 轴下方,当 时,求抛物线的解析式;
(Ⅲ)无论 取何值,该抛物线都经过定点 .当 时,求抛物线的解析式.
在平面直角坐标系中,四边形 是矩形,点 ,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 , , 的对应点分别为 , , .
(Ⅰ)如图①,当点 落在 边上时,求点 的坐标;
(Ⅱ)如图②,当点 落在线段 上时, 与 交于点 .
①求证 ;
②求点 的坐标.
(Ⅲ)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).
某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为 为正整数).
根据题意,填写下表:
游泳次数 |
10 |
15 |
20 |
|
|
方式一的总费用(元 |
150 |
175 |
|
|
|
方式二的总费用(元 |
90 |
135 |
|
|
|
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当 时,小明选择哪种付费方式更合算?并说明理由.