游客
题文

(本小题满分12分)
定义在R上的函数f(x)满足对任意的x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(1)求证:f(x)为奇函数;
(2)判断f(x)的单调性并证明;
(3)解不等式:f[log2(x++6)]+f(-3)≤0.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

若下列方程:,至少有一个方程有实根,试求实数的取值范围.
解:设三个方程均无实根,则有
解得,即
所以当时,三个方程至少有一个方程有实根.

已知为互不相等的实数,求证:

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

(本小题满分12分)双曲线的离心率为2,坐标原点到
直线AB的距离为,其中A,B.
(1)求双曲线的方程;
(2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求
时,直线的方程.

已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线点,且
,,
的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号