游客
题文

(本题14分)如图,在平面直角坐标系中,抛物线经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.

(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成30°角,斜坡CD与水平地面BC成30°的角,求旗杆AB的高度(结果保留根号).

已知:如图,∠MAN=45°,B为AM上的一个定点, 若点P在射线AN上,以P为圆心,PA为半径的圆与射线AN的另一个交点为C,请确定⊙P的位置,使BC恰与⊙P相切.

(1)画出图形(不要求尺规作图,不要求写画法);
(2)连结BP并填空:
① ∠ABC= °;
② 比较大小:∠ABP∠CBP.(用“>”、“<”或“=”连接)

如图,Rt△ABC的斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两直角边相切于点D、E,

(1)求证∠A=∠B.
(2)求图中阴影部分的面积.

如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.

(1)求证:OD⊥BE;
(2)若DE=,AB=,求AE的长.

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

求证:△ADF∽△DEC;
若AB=4,AD=3,AE=3,求ED,AF的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号