(本题10分)已知是定义在
上的奇函数,
时,
.
(1)求在
上的表达式;
(2)令,问是否存在大于零的实数
、
,使得当
时,函数
值域为
,若存在求出
、
的值,若不存在请说明理由.
设正有理数x是的一个近似值,令
.
(Ⅰ)若;
(Ⅱ)比较y与x哪一个更接近于,请说明理由.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆C的交点为O,P,与直线
的交点为Q,求线段PQ的长.
如图,、
、
是圆
上三点,
是
的角平分线,交圆
于
,过
作圆
的切线交
的 延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数,其中e为自然对数的底数,且当x>0时
恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.