(本小题满分12分)如图,已知四棱锥的底面是菱形,对角线
交于点
,
,
,
,
底面
,点满足
.
(1)当时,证明:
.
(2)若二面角的大小为
,问:符合条件的点
是否存在.若存在,求出
的值.若不存在,说明理由.
已知直角梯形中,
,
,
,
是等边三角形,平面
⊥平面
.
(1)求二面角的余弦值;
(2)求到平面
的距离.
已知的内角
所对边分别为
,且
.
(1)求角的大小;
(2)若,求边长
的最小值.
甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
(2)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y
(1)列出所有可能结果。
(2)求事件A=“取出球的号码之和小于4”的概率。
(3)求事件B=“编号X<Y”的概率
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.从这5辆车中任取2辆,求至少有1辆舒适型轿车的概率。