游客
题文

(本小题满分12分)在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.
(Ⅰ)若圆分别与轴、轴交于点(不同于原点),求证:的面积为定值;
(Ⅱ)设直线与圆交于不同的两点,且,求圆的方程;
(Ⅲ)设直线与(Ⅱ)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,求证:直线过定点.

科目 数学   题型 解答题   难度 较难
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

(本小题满分12分)
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.

(本小题满分12分)
ABC的内角A、B、C的对边分别为a、b、c,cos(A—C)+cos B=,b2=ac,求B.

(本小题满分14分)
已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,),过点P(2,1)的直线l与椭圆C在第一象限相切于点M.
(1)求椭圆C的方程;
(2)求直线l的方程以及点M的坐标;
(3)是否存在过点P的直线l与椭圆C相交于不同的两点A,B,满足·=?若存在,求出直线l的方程;若不存在,请说明理由.

(本小题满分14分)
已知函数f (x)=(2-a)(x-1)-2lnx,(a∈R,e为自然对数的底数)
(1)当a=1时,求f (x)的单调区间;
(2)若函数f (x)在(0,)上无零点,求a的最小值

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号