(本小题满分为10分)
求满足下列条件的直线的一般式方程:
(Ⅰ)经过两条直线和
的交点,且垂直于直线
(Ⅱ)与两条平行直线及
等距离
(本小题满分14分)
抛物线D以双曲线的焦点
为焦点
.
(1)求抛物线D的标准方程;
(2)过直线上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐
标;
(3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|·|QN|=|QM|·|PN|
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
(本小题满分12分).
已知函数在
上是减函数,在
上是增函数,函数
在
上有三个零点,且1是其中一个零点.
(1)求的值; (2)求
的取值范围;
(本小题满分12分)如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC
平面ABC.
(1)证明:平面ACD平面
;
(2)若,
,
,试求该简单组合体的体积V.
(本小题满分12分)
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组
……第五组
.下图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、
表示该班某两位同学的百米测试成绩,且已知
.
求事件“”的概率.