游客
题文

问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
 
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌            ,得EH=ED.
在Rt△HBE中,由        定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是                               
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且距离为0.8米.已知小汽车车门宽 AO 为1.2米,当车门打开角度 AOB 40 ° 时,车门是否会碰到墙?请说明理由.(参考数据: sin 40 ° 0 . 64 cos 40 ° 0 . 77 tan 40 ° 0 . 84 )

在直角坐标系中,过原点 O 及点 A ( 8 , 0 ) C ( 0 , 6 ) 作矩形 OABC 、连接 OB ,点 D OB 的中点,点 E 是线段 AB 上的动点,连接 DE ,作 DF DE ,交 OA 于点 F ,连接 EF .已知点 E A 点出发,以每秒1个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒.

(1)如图1,当 t = 3 时,求 DF 的长.

(2)如图2,当点 E 在线段 AB 上移动的过程中, DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 tan DEF 的值.

(3)连接 AD ,当 AD ΔDEF 分成的两部分的面积之比为 1 : 2 时,求相应的 t 的值.

问题背景

如图1,在正方形 ABCD 的内部,作 DAE = ABF = BCG = CDH ,根据三角形全等的条件,易得 ΔDAE ΔABF ΔBCG ΔCDH ,从而得到四边形 EFGH 是正方形.

类比探究

如图2,在正 ΔABC 的内部,作 BAD = CBE = ACF AD BE CF 两两相交于 D E F 三点 ( D E F 三点不重合)

(1) ΔABD ΔBCE ΔCAF 是否全等?如果是,请选择其中一对进行证明.

(2) ΔDEF 是否为正三角形?请说明理由.

(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a AD = b AB = c ,请探索 a b c 满足的等量关系.

定义:如图1,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,点 P 在该抛物线上 ( P 点与 A B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a 0 ) 的勾股点.

(1)直接写出抛物线 y = x 2 + 1 的勾股点的坐标.

(2)如图2,已知抛物线 C : y = a x 2 + bx ( a 0 ) x 轴交于 A B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.

(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP Q 点(异于点 P ) 的坐标.

“五 一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.

根据以下信息,解答下列问题:

(1)设租车时间为 x 小时,租用甲公司的车所需费用为 y 1 元,租用乙公司的车所需费用为 y 2 元,分别求出 y 1 y 2 关于 x 的函数表达式;

(2)请你帮助小明计算并选择哪个出游方案合算.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号