如图1,在平面直角坐标系中,抛物线交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.
(1)求抛物线解析式;
(2)如图2,当点F恰好在抛物线上时,求线段OD的长;
(3)在(2)的条件下:
①连接DF,求tan∠FDE的值;
②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.
已知:线段、
和∠β(如图),利用直尺和圆规作ΔABC,使BC=
,AB=
,∠ABC=∠β。(不写作法,保留作图痕迹)。
化简求值:,其中
.
如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为以AC为腰的等腰三角形,若存在,求点P的坐标,若不存在,说明理由.
如图一次函数的图象与反比例函数
的图象交于点A
,B(3,a).
(1)求、
的值;
(2)直接写出一次函数的值大于反比例函数
的值时x的取值范围:
;
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x 轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.