一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
化简(每小题4分,共8分)
(1)(+
)(
)
(2)
如图,已知△ABC的三个顶点的坐标都在格点上,分别为A(-2,3)、B(-6,0) 、C(-1,0).
(1)请将点A、B、C的纵坐标分别乘以-1后得到点A′、B′、C ′描在坐标系中,并顺次连接A′、B′、C ′得到△A′B′C ′;
(2)请问△A′B′C ′与△ABC有怎样的位置关系?
甲、乙两辆摩托车同时从相距20km的A、B两地出发,相向而行,图中分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系,则下列说法错误的是()
A.乙摩托车的速度较快
B.经过0.3小时甲摩托车行驶到A、B两地的中点
C.经过0.25小时两摩托车相遇
D.当乙摩托车到达A地时,甲摩托车距离A地km.
(本题7分)如图,一副三角板的两个直角顶点重合在一起。
(1)比较与
的大小,并说明理由;
(2)与
的和为多少度?为什么?
(本题7分)一元一次方程应用:
某中学组织初一学生到某基地军训,基地分配给该校宿舍若干间。 如果每间宿舍住8人,则少12个床位;如果每间宿舍住9人,却又空出2间宿舍。 请问该校参加这次军训的学生有多少人?