(乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.
如图,抛物线交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.
(1)求点A,B的坐标;
(2)证明:OP=PC
如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.求折痕EF的最大值.
某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:
(1)补全图1中的条形统计图;
(2)现有喜欢“新闻节目”记为A,“体育节目”记为B,“综艺节目”记为C,“科普节目”记为D的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.
如图,Rt△中,
,
,
,
是斜边
上的高,点
为边
上一点(点
不与点
、
重合),连接
,作
⊥
,
与边
、线段
分别交于点
,
;
(1)求线段、
的长;
(2)设,
,求
关于
的函数解析式,并写出x的取值范围.
如图,,C、D是
的三等分点,AB分别交OC、OD于点E、F,求证:AE=CD.