游客
题文

(宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(),AB=1,AD=2.
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,顶点为 M 的抛物线 y = a ( x + 1 ) 2 4 分别与 x 轴相交于点 A B (点 A 在点 B 的右侧),与 y 轴相交于点 C ( 0 , 3 )

(1)求抛物线的函数表达式;

(2)判断 ΔBCM 是否为直角三角形,并说明理由.

(3)抛物线上是否存在点 N (点 N 与点 M 不重合),使得以点 A B C N 为顶点的四边形的面积与四边形 ABMC 的面积相等?若存在,求出点 N 的坐标;若不存在,请说明理由.

如图①, AD 为等腰直角 ΔABC 的高,点 A 和点 C 分别在正方形 DEFG 的边 DG DE 上,连接 BG AE

(1)求证: BG = AE

(2)将正方形 DEFG 绕点 D 旋转,当线段 EG 经过点 A 时,(如图②所示)

①求证: BG GE

②设 DG AB 交于点 M ,若 AG : AE = 3 : 4 ,求 GM MD 的值.

某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有 A B 型两种客车,它们的载客量和租金如表所示:

A 型客车

B 型客车

载客量(人 / 辆)

45

28

租金(元 / 辆)

400

250

经测算,租用 A B 型客车共13辆较为合理,设租用 A 型客车 x 辆,根据要求回答下列问题:

(1)用含 x 的代数式填写下表:

车辆数(辆 )

载客量(人 )

租金(元 )

A 型客车

x

45 x

400 x

B 型客车

13 x

  

  

(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

如图,在平面直角坐标系 xOy 中,一次函数 y = ax + b 的图象与反比例函数 y = k x 的图象相交于点 A ( 4 , 2 ) B ( m , 4 ) ,与 y 轴相交于点 C

(1)求此反比例函数和一次函数的表达式;

(2)求点 C 的坐标及 ΔAOB 的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号