某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:
(1)此次调查抽取的学生人数m= 名,其中选择“书法”的学生占抽样人数的百分比n= ;
(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
已知经过
,
,
,
四点,一次函数
的图象是直线
,直线
与
轴交于点
.
(1)在右边的平面直角坐标系中画出,直线
与
的交点坐标为;
(2)若上存在整点
(横坐标与纵坐标均为整数的点称为整点),使得
为等腰三角形,所有满足条件的点
坐标为;
(3)将沿
轴向右平移个单位时,
与
相切.
如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和
,将菱形的“接近度”定义为
,于是,
越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于;
②当菱形的“接近度”等于时,菱形是正方形.
(2)设矩形相邻两条边长分别是和
(
),将矩形的“接近度”定义为
,于是
越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
口袋中装有2个小球,它们分别标有数字
和
;
口袋中装有3个小球,它们分别标有数字
,
和
.每个小球除数字外都相同.甲、乙两人玩游戏,从
两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.
图1是某市2007年2月5日至14日每天最低气温的折线统计图.
(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是,中位数是,方差是.