(河池)如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
先化简,再从 ,0,1,2, 中选择一个合适的 的值代入求值. .
计算: .
如图,在直角坐标系中,二次函数 的图象与 轴相交于点 和点 ,与 轴交于点 .
(1)求 、 的值;
(2)点 为抛物线上的动点,过 作 轴的垂线交直线 于点 .
①当 时,求当 点到直线 的距离最大时 的值;
②是否存在 ,使得以点 、 、 、 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 的值.
如图①, 、 是等腰 的斜边 上的两动点, , 且 .
(1)求证: ;
(2)求证: ;
(3)如图②,作 ,垂足为 ,设 , ,不妨设 ,请利用(2)的结论证明:当 时, 成立.
如图,点 在以 为直径的 上, 的角平分线与 相交于点 ,与 相交于点 ,延长 至 ,连结 ,使得 ,过点 作 的平行线与 的延长线交于点 .
(1)求证: 与 相切;
(2)试给出 、 、 之间的数量关系,并予以证明.