游客
题文

(年云南省昆明市)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15cm,CD=20cm,AB和CD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用-仰角俯角问题
登录免费查看答案和解析
相关试题

(1)解方程:;(2)解不等式组:

计算或化简:
(1)计算:+|2−3|+sin245°
(2)先化简,再求值:,其中x=-2.

操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点(不包括射线的端点).如图1,2,3是旋转三角板得到的图形中的3种情况.
研究:

(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合如图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长;若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM∶MB=1∶3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合如图4加以证明.

如图,一条直线与反比例函数的图象交于A(1,4)B(4,n)两点,与轴交于D点,AC⊥轴,垂足为C.

(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点.试说明△CDE∽△EAF;

为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了3.2米(BB),再把竹竿竖立在地面上,测得竹竿的影长(BC)为1.8米,求路灯离地面的高度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号