小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具210个,平均每天生产30个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):
(1)根据记录的数据可知小明妈妈星期三生产玩具__________个;
(2)根据记录的数据可知小明妈妈本周实际生产玩具__________个;
(3)该厂实行“每日计件工资制”。每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣2元,那么小明妈妈这一周的工资总额是多少元?
(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.
解方程: .
计算: .
【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.
已知抛物线 经过 , , 三点,对称轴是直线 .关于 的方程 有两个相等的实数根.
(1)求抛物线的解析式;
(2)若 ,试比较 与 的大小;
(3)若 , 两点在直线 的两侧,且 ,求 的取值范围.
矩形 中, , .将矩形折叠,使点 落在点 处,折痕为 .
(1)如图①,若点 恰好在边 上,连接 ,求 的值;
(2)如图②,若 是 的中点, 的延长线交 于点 ,求 的长.