(本小题满分12分)已知直线
,双曲线
.
①若直线
与双曲线
的其中一条渐近线平行,求双曲线
的离心率;②若直线
过双曲线的右焦点
,与双曲线交于
、
两点,且
,求双曲线方程.
(本小题满分13分)已知函数
,其中
.
(1)当
时,求
的单调区间;
(2)当
时,证明:存在实数
,使得对于任意的实数
,都有
成立.
(本小题满分14 分)如图1,在边长为4的菱形
中,
,
于点
,将
沿
折起到
的位置,使
,如图 2.

(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)判断在线段
上是否存在一点
,使平面
平面
?若存在,求出
的值;若不存在,说明理由.
(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.
为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)当
时,记甲型号电视机的“星级卖场”数量为
,乙型号电视机的“星级卖场”数量为
,比较
,
的大小关系;
(2)在这10 个卖场中,随机选取2 个卖场,记
为其中甲型号电视机的“星级卖场”的个数,求
的分布列和数学期望;
(3)若
,记乙型号电视机销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值.(只需写出结论)
(本小题满分13分)在锐角
中,角
,
,
所对的边分别为
,
,
,已知
,
,
.
(1)求角
的大小;
(2)求
的面积.
一束光线通过点
射到
轴上,被反射到圆
上.
(1)求通过圆心的反射光线所在直线方程;
(2)求在
轴上入射点
的活动范围.