(本小题满分12分)已知是
的一个极值点.
(1)求函数的单调减区间;
(2)设函数,若函数
在区间
内单调递增,求
的取值范围.
(本大题满分14分)
已知数列和
满足:
,
,
,其中
为实数,
为正整数.
(Ⅰ)对任意实数,证明:数列
不是等比数列;
(Ⅱ)证明:当时,数列
是等比数列;
(Ⅲ)设(
为实常数),
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
(本大题满分13分)已知数列,设
,数列
.
(1)求证:是等差数列;
(2)求数列的前n项和Sn;
(3)若一切正整数n恒成立,求实数m的取值范围.
(本大题满分13分)如图,现有一块半径为2m,圆心角为的扇形铁皮
,欲从其中裁剪出一块内接五边形
,使点
在
弧上,点
分别在半径
和
上,四边形
是矩形,点
在弧
上,
点在线段
上,四边形
是直角梯形.现有如下裁剪方案:先使矩形
的面积达到最大,在此前提下,再使直角梯形
的面积也达到最大.
(Ⅰ)设,当矩形
的面积最大时,求
的值;
(Ⅱ)求按这种裁剪方法的原材料利用率.
本大题满分13分)
已知函数,过该函数图象上点
(Ⅰ)证明:图象上的点总在
图象的上方;
(Ⅱ)若上恒成立,求实数
的取值范围.
(本大题满分12分)设函数f(x)=x2+x-.
(1)若函数的定义域为[0,3],求f(x)的值域;
(2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值.