在平面直角坐标系中,点
,直线
。设圆
的半径为
,圆心在
上。(1)若圆心
也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围。
在△中,
分别为内角
的对边,且
△
的面积为15
,求边
的长.
已知函数,设函数
(Ⅰ)求证:是奇函数;
(Ⅱ)(1) 求证:;
(1) 结合(1)的结论求的值;
(Ⅲ)仿上,设是
上的奇函数,请你写出一个函数
的解析式,并根据第(Ⅱ)问的结论,猜想函数
满足的一般性结论.
已知是互不相等的非零实数,求证:由
确定的三条抛物线至少有一条与
轴有两个不同的交点.
某同学参加北大、清华、科大三所学校的自主命题招生考试,其被录取的概率分别为(各学校是否录取他相互独立,允许他可以被多个学校同时录取).
(Ⅰ)求此同学没有被任何学校录取的概率;
(Ⅱ)求此同学至少被两所学校录取的概率.
下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用
(万元)的几组统计数据:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(Ⅰ)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程;
(Ⅱ)估计使用年限为10年时,维修费用为多少?
(参考:(1)
(2))