为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图。
(Ⅰ) 在第一组和第五组内任取两个学生,记这两人的百米测试成绩分别为求事件“
”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标
标准,则男女生达标情况如附表:
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
完成上述2×2列联表,根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
已知等差数列满足:
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前
项和
.
(本小题满分12分)如图,在平面直角坐标系中,点
在单位圆
上,
,且
.
(1)若,求
的值;
(2)若也是单位圆
上的点,且
.过点
分别做
轴的垂线,垂足为
,记
的面积为
,
的面积为
.设
,求函数
的最大值.
(本小题满分12分)已知,
,且
(1)求函数的解析式;
(2)当时,
的最小值是
,求此时函数
的最大值,并求出函数
取得最大值时自变量
的值
(本小题满分12分)从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组、第二组
;…第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(Ⅰ)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足
的事件概率;
(本小题满分12分)已知,
,
.
(Ⅰ)求向量与
的夹角θ;
(Ⅱ)求及向量
在
方向上的投影.