(本小题满分10分)以下是搜集到的开封市祥符区新房屋的销售价格(万元)和房屋的面积
(
)的数据: 已知变量
和
线性相关。
![]() |
80 |
95 |
100 |
110 |
115 |
![]() |
18.4 |
21.6 |
23.2 |
24.8 |
27 |
(Ⅰ)求、
,及线性回归方程;
(Ⅱ)据(Ⅰ)的结果估计当房屋面积为时的销售价格。
根据统计,组装第x件某产品(),甲工人所用的时间为
,乙工人所用的时间为
(
,
为常数)(单位:分钟).已知乙工人组装第4件产品用时15分钟,组装第
件产品用时10分钟.
(Ⅰ)求和
的值;
(Ⅱ)组装第x件某产品,甲工人的用时是否可能多于乙工人的用时?若可能,求出所有x的值;若不可能,请说明理由.
将一枚质地均匀的骰子连掷两次,记向上的点数分别为.
(Ⅰ)求事件“”的概率;
(Ⅱ)求事件“方程有实根”的概率.
为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段
,
,…,
后得到如下部分频率分布直方图.
(Ⅰ)求抽出的60名学生中分数在内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.
.(本小题共13分)函数的定义域为R,数列
满足
(
且
).
(Ⅰ)若数列是等差数列,
,且
(k为非零常数,
且
),求k的值;
(Ⅱ)若,
,
,数列
的前n项和为
,对于给定的正整数
,如果
的值与n无关,求k的值.
(本小题共14分)已知函数.
(Ⅰ)若函数在
,
处取得极值,求
,
的值;
(Ⅱ)若,函数
在
上是单调函数,求
的取值范围.