游客
题文

(本题6分)阅读理解:
图1中的每相邻两条竖线之间,从上至下有若干条横线(即“桥”),这样就构成了“天梯”。现在规定,运算符号“×、÷、+、-”分别从它们下方的竖线上端出发,在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规则进行,最后运动到竖线下方字母之间的“○”中,将a、b、c、d、e连接起来,构成一个算式.例如图1中,“×”号根据规则就应该沿箭头方向运动,最后向下进入d、e之间的“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式:a-b+c÷d×e.
解决问题:
(1)根据图2所示的“天梯”写出算式,并计算当a=6,b=﹣32,c=﹣8,d=,e=﹣时所写算式的值;
(2)在图3添加横线(不超过4条),中设计出一种“天梯”,使列出的算式为a-b÷c×d+e.

科目 数学   题型 解答题   难度 较难
知识点: 整式的加减 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.

(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.

如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0)

(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为的中点.

(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6,求BC的长.

如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,

(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.

如图,小明为了测量一铁塔的高度CD,他先在A处测得塔顶C的仰角为30°,再向塔的方向直行40米到达B处,又测得塔顶C的仰角为60°,请你帮助小明计算出这座铁塔的高度.(小明的身高忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号