甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:
如图,棱锥的底面
是矩形,
⊥平面
,
.
(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B的大小;
(3)求点C到平面PBD的距离.
如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为
.已知
,
,
,
.
(1)设点是
的中点,证明:
平面
;
(2)求与平面
所成的角的正弦值;
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R.
(1)若m=3,求A∩B;
(2)若A⊆B,求实数m的取值范围.
已知函数(其中
),函数
在点
处的切线过点
.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数与函数
的图像在
有且只有一个交点,求实数
的取值范围.
如图,在四棱锥P-ABCD中,平面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为
?若存在,求出
值;若不存在,请说明理由.