已知的第五项的二项式系数与第三项的二项式系数的比是
,
(1)求n;
(2)求展开式中常数项.
设数列的前
项和为
,且对任意的
,都有
,
.
(1)求,
的值;
(2)求数列的通项公式
;
(3)证明:.
已知点,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.
(1)求动点的轨迹
的方程;
(2)已知圆过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
已知,函数
,
(其中
为自然对数的底数).
(1)求函数在区间
上的最小值;
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.
如图6,正方形所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
、
的点,
,圆
的直径为9.
(1)求证:平面平面
;
(2)求二面角的平面角的正切值.