设命题p:|2x-3|<1;命题q:lg2x-(2t+l)lgx+t(t+l)≤0,
(1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值;
(2)若p是
q的必要不充分条件,求实数t的取值范围.
(本小题满分12分)为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:与y=
哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)
其中;
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程。
参考公式:
(本小题满分12分)已知函数且
的解集为
(Ⅰ)求k的值;
(Ⅱ)若是正实数,且
,求证:
。
(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
(本小题满分10分)已知集合.
(Ⅰ)若的充分条件,求
的取值范围;
(Ⅱ)若,求
的取值范围.
已知函数
⑴解不等式;
⑵设函数,若不等式
恒成立,求实数
的取值范围.