已知集合A=B=
(1)当m=3时,求A(
RB);
(2)若AB
,求实数m的值.
(本小题满分15分)已知直线l的方程为:,直线l与x轴的交点为F, 圆O的方程为:
,C、 D在圆上, CF⊥DF,设线段CD的中点为M.
(1)如果CFDG为平行四边形,求动点G的轨迹;
(2)已知椭圆的中心在原点,右焦点为F,直线l交椭圆于A、B两点,又,
求椭圆C的方程.
(本小题满分15分)
函数,曲线
上点
处的切线方程为
(1)若在
时有极值,求函数
在
上的最大值;
(2)若函数在区间
上单调递增,求
的取值范围.
(本小题满分14分)
数列{}满足递推式
,其中
.
(1)求a1,a2;
(2)是否存在一个实数,使得
为等差数列,如果存在,求出
的值;如果不存在,试
说明理由;
(3)求数列{}的前n项之和.
(本小题满分14分)
已知向量,向量
与
的夹角为
, 且
.
(1)求向量;
(2)若且
,
,其中A、C是
的内角,若三角形的三个内角A、B、C依次成等差数列,试求
的取值范围