某花店每天以每枝5元的价格从农场购进若干枝郁金香,然后以每枝10元的价格出售.如果当天卖不完,剩下的郁金香做垃圾处理.
(1)若花店一天购进17枝郁金香,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天郁金香的日需求量(单位:枝),整理得下表:
(i)假设花店在这100天内每天购进17枝郁金香,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝郁金香,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
(本小题满分15分)已知,
是平面上的两个定点,动点
满足
.
(Ⅰ)求动点的轨迹方程;
(Ⅱ)已知圆方程为,过圆上任意一点作圆的切线,切线与(Ⅰ)中的轨迹交于
,
两
点,为坐标原点,设
为
的中点,求
长度的取值范围.
(本小题满分15分)如图,在斜三棱柱中,侧面
与侧面
都是菱形,
,
.
(Ⅰ)求证:;
(Ⅱ)若,求二面角
的余弦值.
设函数,其中向量
,
,
.
(Ⅰ)求函数的最小正周期与单调递减区间;
(Ⅱ)在△中,
、
、
分别是角
、
、
的对边,已知
,
,
的面
积为,求
的值.
选修4—5:不等式选讲
已知函数.
(Ⅰ)当时,解不等式
;
(Ⅱ)若不等式的解集包含
,求
的取值范围.
选修4-4:坐标系与参数方程
已知在直角坐标系中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆锥曲线
的极坐标方程为
,定点
,
是圆锥曲线
的左、右焦点.
(Ⅰ)求经过点且平行于直线
的直线
的极坐标方程;
(Ⅱ)设(Ⅰ)中直线与圆锥曲线
交于
两点,求
.