(本小题满分12分)
已知圆,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E。
(I)求轨迹E的方程;
(II)过点P(1,0)的直线交轨迹E于两个不同的点A、B,
(O是坐标原点)的面积
,求直线AB的方程。
(本小题满分12分)
已知函数
(I)当时,求函数
的单调区间;
(II)求证:;
(III)已知数列若
的前n项和,求证:
(本小题满分12分)
如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,
,
(I)求证:面ABF;
(II)求异面直线BE与AF所成的角;
(III)求该几何体的表面积。
(本小题满分12分)
某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,,在A地听到弹射声音的时间比B地晚
秒,A地测得该仪器在A、B、C三地位于同一水平面上,至最高点H时的仰角为30°,求该仪器的垂直弹射高度CH(声音的传播速度为340米/秒)
(本小题满分10分)
已知函数.
(1)求函数的定义域;(2)判断
的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).