【选修4-4:坐标系与参数方程】
已知圆的参数方程为(
,
为参数),将圆上所有点的横坐标伸长到原来的
倍,纵坐标不变得到曲线
;以坐标原点为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线的普通方程与曲线
的直角坐标方程;
(2)设为曲线
上的动点,求点
与曲线
上点的距离的最小值,并求此时
点的坐标.
如图,椭圆
:
的左焦点为
,右焦点为
,离心率
。过
的直线交椭圆于
两点,且
的周长为8
(Ⅰ)求椭圆
的方程。
(Ⅱ)设动直线
:
与椭圆
有且只有一个公共点
,且与直线
相较于点
。试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由
如图,在长方体 中 , 为 中点.
(Ⅰ)求证:
;
(Ⅱ)在棱
上是否存在一点
,使得
平面
?若存在,求
的长;若不存在,说明理由.
(Ⅲ)若二面角
的大小为
,求
的长.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)
(2)
(3)
(4)
(5)
(Ⅰ)试从上述五个式子中选择一个,求出这个常数.
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.
受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:
品牌 | 甲 | 乙 | |||
首次出现故障时间 (年) | |||||
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润(万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为
,生产一辆乙品牌轿车的利润为
,分别求
,
的分布列;
(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由
设
是由
个实数组成的
行
列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记
为所有这样的数表构成的集合。
对于
,记
为
的第
行各数之和(
),
为
的第
列各数之和(
):
记
为
,
,…,
,
,
,…,
中的最小值。
对如下数表
,求
的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)设数表
(2,3)形如
1 |
1 |
|
-1 |
求
的最大值;
(3)给定正整数
,对于所有的
(2,2
+1),求
的最大值。