在等差数列中,,.(1)求数列的通项公式;(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.
设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项. (1)证明:数列为等差数列;(2)求数列的前项和.
设函数,且有. (1)求证:,且; (2)求证:函数在区间内有两个不同的零点.
设函数(其中),区间. (1)求区间的长度(注:区间的长度定义为); (2)把区间的长度记作数列,令,证明:.
已知函数的部分图象如图所示. (1)求的表达式; (2)设,求函数的最小值及相应的的取值集合.
已知内角所对边长分别为,面积,且. (1)求角; (2)若,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号