已知函数,
,函数
的最小值为
.
(1)求;
(2)是否存在实数、
同时满足以下条件:
①;
②当的定义域为
时,值域为
.若存在,求出
、
的值;若不存在,说明理由
如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
已知点,
,动点
的轨迹曲线
满足
,
,过点
的直线交曲线
于
、
两点.
(1)求的值,并写出曲线
的方程;
(2)求△面积的最大值.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(其中
为坐标原点),求整数
的最大值.
如图:在三棱锥D-ABC中,已知是正三角形,AB
平面BCD,
,E为BC的中点,F在棱AC上,且
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
已知 且
;
:集合
,且
.若
∨
为真命题,
∧
为假命题,求实数
的取值范围.