“水资源与永恒发展”是2015年联合国世界水资源日主题.近年来,某企业每年需要向自来水厂缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费 C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.
(1) 试解释 的实际意义,请建立y关于x的函数关系式并化简;
(2) 当x为多少平方米时,y取得最小值?最小值是多少万元?
选修:几何证明选讲
如图,已知圆的两弦
和
相交于点
,
是圆
的切线,
为切点,
.求证:
(Ⅰ);
(Ⅱ)∥
.
已知函数;(取
为
,取
为
,取
)
(Ⅰ)若函数在
上单调递增,求实数
的取值范围;
(Ⅱ)若有两个零点
,求证:
.
已知椭圆:
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
与以椭圆
的右焦点为圆心,以
为半径的圆相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,求实数
的取值范围.
如图,四棱锥中, ∥,,,若
,且
.
(Ⅰ)证明:;
(Ⅱ)求二面角的余弦值.
根据我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,人类可正常活动.某市环保局对该市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(Ⅰ)求的值,并根据样本数据,试估计这一年度的空气质量指数的平均值;
(Ⅱ)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取
天的数值,其中达到“特优等级”的天数为
,求
的分布列和数学期望.